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Abstract—We study downlink transmission in a multi-band
heterogeneous network comprising unmanned aerial vehicle
(UAV) small base stations and ground-based dual mode mmWave
small cells within the coverage area of a microwave (μW) macro
base station. We formulate a two-layer optimization framework
to simultaneously find efficient coverage radius for the UAVs and
energy efficient radio resource management for the network, sub-
ject to minimum quality-of-service and maximum transmission
power constraints. The outer layer derives an optimal coverage
radius/height for each UAV as a function of the maximum allowed
path loss. The inner layer formulates an optimization problem to
maximize the system energy efficiency (EE), defined as the ratio
between the aggregate user data rate delivered by the system
and its aggregate energy consumption (downlink transmission
and circuit power). We demonstrate that at certain values of the
target SINR τ introducing the UAV base stations doubles the EE.
We also show that an increase in τ beyond an optimal EE point
decreases the EE.

Index Terms—Energy efficiency, 5G mmWave cellular net-
works, UAV-enabled aerial small cells, next generation net-
working architectures, multi-tier heterogeneous networks, green
communication in 5G systems.

I. INTRODUCTION

5G HETEROGENEOUS networks (HetNets) will comprise
a mix of network tiers of different sizes, transmission pow-

ers, backhaul connections, and radio access technologies [1].
The use of drone small cells or wireless aerial platforms
has been proposed recently to improve network coverage and
capacity [2]. Additionally, UAVs are expected to prove instru-
mental for public safety and disaster management [3]. We
consider a heterogeneous network comprising a microwave
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Fig. 1. The investigated system model.

macro base station (BS), multiple ground-based dual-mode
mmWave small BS (SBS), and multiple microWave-operating
aerial (UAV) BS, as illustrated in Figure 1.

Related UAV work has largely dealt with air-to-ground
channel modeling, investigating line-of-sight (LoS) probabil-
ity and path loss [4], [5]. In our work, we leverage the LoS
probability expression from [6]. Now, despite demonstrat-
ing promising performance in extending network coverage,
there are still several operational challenges of UAV BS,
ranging from energy limitations and interference management
to optimal 3D deployment, which merit further investiga-
tion. For instance, [7] determines the optimal UAV altitude
to minimize transmitted power required to cover a target
region. Reference [8] extends this work by determining the
optimal UAV locations given their corresponding cell bound-
aries are known. However, both studies do not consider
ground-based small and macro cells existing simultaneously.
Furthermore, [9] studies proactive deployment of cache-
enabled UAVs for optimizing a given QoE metric, determining
user-UAV associations, the optimal UAV locations, and the
cached content. Finally, [10], [11] investigate UAV-IoT data
acquisition, networking, and path planning towards enabling
next generation applications such as networked virtual and
augmented reality. Similarly, [12] explores a game-theoretic
coalition formation approach for coordinated task allocation
in heterogeneous UAV networks, and [13] studies the optimal
measurements policy for predicting the dynamic UAV network
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topology based on particle swarm optimization and Kalman
filtering with intermittent observations.

Another feature of 5G networks is the use of mmWave
and microWave resources simultaneously. The utilization of
mmWave technology has recently gained attention due to the
higher available bandwidth (in the range of 1–2 GHz) and the
possibility of larger antenna arrays due to the smaller wave-
length of mmWave signals [14]. Semiari et al. [15] present a
novel scheduling framework for small cells operating in dual
mode, i.e., in both mmWave and ultra high frequency (UHF)
bands. We adopt a similar approach towards transmissions
from the SBS, whereby the users in a small cell may uti-
lize one of the two frequency bands available in the mmWave
band, depending on which one maximizes their respective rate.

In contrast to related work [7], [16], we study for the first
time the energy efficiency (EE) of a UAV-assisted multi-band
HetNet, comprising ground-based macro BS and dual-mode
mmWave SBS, and derive an optimization framework to
maximize it. We propose a joint subcarrier and power allo-
cation scheme to maximize the system EE while satisfying a
minimum QoS level for the users and a maximum power trans-
mission constraint. To solve this radio resource management
problem, we propose a two-layer optimization framework. In
its inner layer, the EE of the macro BS tier is maximized. In
its outer layer, the power consumption of the UAV tier is opti-
mized to satisfy its users’ minimum rate requirement, while
limiting its maximum interference to the macro BS tier.

For comprehensiveness, we finally reference earlier studies
that in the context of ground-based (generic/single tier) cellu-
lar networks have examined the topics of capacity analysis in
multi-cell networks with co-channel interference, spatial spec-
trum reuse and energy efficiency of random cellular networks,
and ultra-dense networks [17]–[19].

The rest of this paper is organized as follows. Section II
presents our system models, formulating the considered infras-
tructure and air-to-ground channels. Sections III–V formulate
the power allocation mechanisms for the μW BS, the UAVs,
and the SBS, respectively. In Section VII, we present our
experimental results. Section VIII concludes the paper.

II. SYSTEM MODEL

The network comprises a macro cell BS, W SBS, and E
UAV BS, with a total of M users distributed randomly in
the region of interest. The macro cell BS is denoted as μW.
Each UAV and the μW BS share NμW subcarriers, whereas
each mmWave SBS w has two available mmWave bands
b ∈ {H ,L} where H and L denote the higher/lower mmWave
bands. We consider H and L to be respectively noise and inter-
ference limited, as indicated by [20]. Each user is expected to
achieve a minimum data rate Rmin. It should be noted that
all BS in the three-tier hybrid HetNet operate independently
to find their optimal transmission power in a distributed man-
ner [21]. We assume that each subcarrier can be exclusively
assigned to only one user within the same BS of each tier k.
We assume that each user m associates to the tier k with the
maximum biased received power Γk

m = βkP
max
k G(θk )

PLk
m

, where

Pmax
k is the maximum transmission power of tier k, βk is

the biasing factor of tier k ∈ {macro,UAV, small}, θk is the
azimuthal angle of the BS beam alignment, PLk

m is the aver-
age downlink path loss experienced by user m when served by
tier k (one of its BS), and G(θk ) is the respective antenna gain.
Based on this user association scheme, user m can belong to
one of the following three disjoint sets: (i) m is served by the
macro BS tier or the small cell tier’s mmWave band L, (ii) m
is served by the UAV tier, or (iii) m is served by small cell
tier’s mmWave band H. With respect to downlink transmis-
sion, the objective is to maximize the system EE in the case
of (i), to minimize the power consumption in the case of (ii),
and to maximize the transmission rate in the case of (iii). The
achievable rate of user m on subcarrier n associated with tier
l ∈ {macro, UAV} is

r (l)
m,n = ΘlBl log2

(
1 + γ

(l)
m,n × p(l)

m,n

)
, (1)

where Θl is the proportion of bandwidth allocated to each
subcarrier by the associated BS of tier l, Bl denotes the
total bandwidth available to the associated BS of tier l, p(l)

m,n

denotes the power allocated to user m on subcarrier n by this
BS, and γ

(l)
m,n is the respective (downlink) channel gain.

The distance d between user m and its associated UAV e is

d =
√

(x − xe)2 + (y − ye)2 + z2
e , (2)

where xe , ye and ze represent the x, y and z coordinates of
a UAV e in a cartesian plane. The altitude of the UAV e is
ze = setan(θe), where se is the 2D distance of m from e
and θe = π/2 − ϑ, for ϑ the UAV’s half beamwidth angle.
Similarly, the LoS probability between e and m is given as
PLoS = 1/(1 + C · exp [ − Y(θe − C)]) [6], where C and Y
are constants dependent on the environment settings (rural,
urban, dense urban, or others).

A. Dual Mode mmWave Small Cells

We consider that the SBS are using TDMA. The average
achievable rate of user m on subcarrier n associated with the
mmWave tier on band b across T time slots is,

rw ,b
m,n =

1
T

T∑
t=1

Θw ,bBw ,b log2

(
1 + γw ,b

m,nt
× pw ,b

m,nt

)
, (3)

where Θw ,b is the bandwidth share allocated to each subcarrier
on band b, Bw ,b indicates the total bandwidth available to

the mmWave SBS on band b, and pw ,b
m,nt indicates the power

allocated to user m on the subcarrier nt at time slot t. Thus,
the total achieved rate of user m associated with SBS w is
rw
m,n =

∑
b∈{H ,L} rw ,b

m,n . Finally, the total data rate for user m,
associated with either μW BS, UAV BS, or w SBS is

Rm =
∑

k∈{l ,w}

Nk∑
n=1

σm,k r (k)
m,n , (4)

where σm,k = 1, if m is associated with tier k, and 0 otherwise,
and Nk is the total number of subcarriers available to tier k.

We denote the total power consumed by user m as Pm =∑
k∈{l ,w}

∑Nk
n=1 σm,kp(k)

m,n . Then, we define the system EE

as
∑M

m=1 Rm/(
∑M

m=1 Pm +
∑

k∈K PCk
), where PCk

is the
circuit power of tier k.
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B. Determining the Optimal Altitude of a UAV

We determine the UAV e’s height above ground such that
its maximum path loss experienced at transmission (to its far-
thest user) does not exceed PLmax. In particular, we first
characterize the path loss between e and its associated users
as

Ω� (dB) = 20 log
(

4π

λμW

)
+ 10αe log(d) + η� + χμW

� ,

where � ∈ {LoS, NLoS}, ηLoS and ηNLoS denote the aver-
age additional loss in LoS or NLoS links relative to the
free space propagation loss measured in dB, αe is the path
loss exponent for UAV e, and χμW represents the shadow-
ing in the microwave band (in dB), modeled as a Gaussian
random variable with zero mean and variance ξ2

1 . We then
formulate the average path loss between e and its associated
user m as PLe

m = PLoS × ΩLoS + PNLoS × ΩNLoS, where
PNLoS = 1 − PLoS.

Finally, given the above, we first derive PLmax as

PLmax = dαe

[
PLoS

(
100.1×ηLoS

)

+ PNLoS

(
100.1×ηNLoS

)]
, (5)

where d in this case denotes the distance to the farthest served
user. Subsequently, we can derive ze from PLmax as

ze = cos(ϑ)

(
PLmax

[PLoS(100.1×ηLoS ) + PNLoS(100.1×ηNLoS)]

)(1/αe )

.

(6)

III. POWER ALLOCATION MECHANISM FOR μW BS

Our objective here is to simultaneously optimize the achiev-
able rate and EE of all users associated with the μW BS subject
to a maximum transmission power constraint and minimum
required QoS level. The joint optimization is equivalent to
maximizing the sum rate and minimizing the total power con-
sumption for the users. We formulate it as a multi-objective
problem which we then transform into a single objective opti-
mization using the weighted sum method by normalizing the
two objectives by Rnorm and Pnorm, respectively, to ensure a
consistent comparison, as shown below:

max
p

φ

∑
m∈MμW

∑
n∈NμW

κm,nr (μW )
m,n

Rnorm

−(1 − φ)
P

Pnorm
,

subject to:
∑

m∈MμW

∑
n∈NμW

p(μW )
m,n ≤ Pmax

μW ,

Rm ≥ Rmin,∀m, p(μW )
m,n ≥ 0,

κm,n ∈ {0, 1},∀m,n, (7)

where MμW denotes the total number of users associated with
μW BS, NμW denotes the total number of subcarriers avail-
able to this BS, Pnorm is the maximum transmit power of the
BS, Rnorm is the maximum achievable rate corresponding to
Pnorm, P =

∑
m,n p(μW )

m,n , and κm,n indicates whether sub-
carrier n has been assigned to user m. We note that while the

Algorithm 1 Power Allocation for Users of μW BS

1: Set j = 0 and jmax = 104; Initialize p(μW )
m,n = 10−6,

ϕm = 10−2, ∀m , and μμW = 10−2.
2: while ϕm and μμW have not converged or j < jmax do

3: Compute p(μW )
m,n using (9)

4: Update μμW (j + 1) and ϕm(j + 1) using (10)
5: end while
6: End

user association has been done beforehand, we use the sub-
script μW to improve the readability here. Since user m can
share at most one subcarrier with another user associated with
a UAV BS, we can decompose (7) into (i) a power allocation
problem for users associated with the μW BS and a UAV, and
(ii) a subcarrier allocation problem for the users associated
with the μW BS. We formulate the first problem as

max
p

φ

∑
m∈MμW

∑
n∈NμW

r (μW )
m,n

Rnorm
− (1 − φ)

P
Pnorm

, (8)

subject to the first three constraints in (7).
We note that when φ = 1, (8) transforms into rate

maximization, while for φ = 0 it transforms into power min-
imization. Moreover, for φ = φEE ∈ [0, 1], it transforms into
EE maximization. We write the Lagrangian function for (8) as

T (p,μ,ϕ) =
φ

Rnorm

∑
m,n

r (μW )
m,n − (1 − φ)

Pnorm
P

+ μ

(
Pmax

μW −
∑
m,n

p(μW )
m,n

)

+
∑

m∈MμW

ϕm(Rm − Rmin),

where Pmax
μW is the maximum transmit power of the μW BS.

The optimal value p(μW )
m,n can then be computed as

p(μW )
m,n =

⎡
⎣
(

φ
Rnorm

+ ϕm

)
ΘμW BμW(

μ + 1−φ
Pnorm

)
(ln2)

− 1

γ
(μW )
m,n

⎤
⎦

+

, (9)

where μ and ϕm are the Lagrangian multipliers associated
with the first two constraints in (7), which we update using a
sub-gradient method as follows:

μµW (j + 1) =

⎡
⎣μµW (j ) − s1

⎛
⎝Pmax

µW −
MµW∑
m=1

NµW∑
n=1

p
(µW )
m,n

⎞
⎠
⎤
⎦

+

,

ϕm (j + 1) = [ϕm (j ) − s2(Rm − Rmin)]
+, (10)

where [x ]+ = max(0, x ). Algorithm 1 provides an algorithmic
description of the formulated power allocation mechanism.

The variables s1 and s2 in (9) represent the step sizes for
the subgradient method. They are selected to meet conver-
gence requirements for the method [22]. Subgradient methods
are very effective in terms of convergence and computational
requirements and therefore have been very popular to use.
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Algorithm 1 represents a convex optimization that prov-
ably converges to the optimal solution. The requirement for
ϕm and μμW to have converged in Algorithm 1 indicates
that their value between two subsequent iterations would not
change for more than a given convergence threshold. In our
experiments, we have set this convergence threshold to 1% in
relative value. Moreover, we have observed that Algorithm 1
converges rapidly.

Using p∗m,n as the optimal power allocation solution to (8),
for the users associated with the μW BS, we model the
subcarrier allocation problem as

max
κm,n

∑
m,n

κm,np∗m,n , s.t. κm,n ∈ {0, 1},∀m,n. (11)

We solve (11) using the Hungarian method [23], which is
a combinatorial optimization algorithm that solves assignment
problems efficiently (in polynomial time).

IV. POWER ALLOCATION MECHANISM FOR UAVS

To guarantee QoS to users associated with the μW BS, we
impose a maximum interference threshold constraint It such
that the total cross-tier interference caused by the UAV to the
user associated with the μW BS and sharing the same subcar-
rier should always be less than or equal to It . The transmission
power on a reused subcarrier by the UAV should be chosen
such that the μW BS users can satisfy their minimum rate
requirement. We calculate this power from

log2

⎛
⎝1 +

p(μW )
m,n |h(μW )

m,n |2(
σ2 +

pe
m,n

PLe
m
|h(e)

m,n |2
)
PLmacro

m

⎞
⎠ ≥ Rmin,

⇒ pe
m,n ≤ PLe

m

|h(e)
m,n |2

(
p(μW )
m,n |h(μW )

m,n |2(
2Rmin − 1

)
PLmacro

m
− σ2

)
,

where h(l)
m,n denotes the squared envelope of the multi-path

fading between user m and the associated BS of tier l (macro
or UAV), σ2 is the thermal noise power, pe

m,n is the transmis-
sion power of UAV e to user m ∈ Me on subcarrier n, which
it shares with μW BS user m ∈ MμW , p(μW )

m,n is the trans-
mission power of the μW BS at the given subcarrier n to user
m ∈ MμW , PLe

m is the path loss between UAV e and user
m ∈ Me , and Rmin is the user minimum rate requirement.

Similarly, the transmission power of UAV e to user m ∈
Me on subcarrier n based on the predetermined interference
threshold It can be computed as pe

m,n ≤ ItPLe
m

|h(e)
m,n |2

, where PLe
m

is the path loss experienced between UAV e and the user m ∈
MμW sharing the same subcarrier n.

Finally, the minimum transmission power that UAV e needs
to use to meet the minimum rate requirement is

pe,min
m,n =

PLe
m

|h(e)
m,n |2

(
2Rmin − 1

)(
σ2 +

p(μW )
m,n |h(e)

m,n |2
PLe

m

)
,

(12)

where PLe
m is the path loss between UAV e and its associated

user m ∈ Me . Hence, the final constrained transmission power

of UAV e to user m on subcarrier n is,

pe opt
m,n =

{
min

(
pe
m,n ,max

(
pe
m,n , pe,min

m,n

))
, if Λ ≥ pe,min

m,n ,

Infeasible, otherwise,

where Λ = min(pe
m,n , pe

m,n ). Note that in some instances
pe opt
m,n can simplify to Λ.

V. POWER/SUBCARRIER ALLOCATION FOR MMWAVE SBS

The SBS have the flexibility to serve their users on one
of the available two mmWave bands {L, H}. As noted ear-
lier, band H is assumed to be noise limited whereas the lower
mmWave band L is assumed to be interference limited con-
sidering the co-tier interference among the SBS operating on
this band. For band H, each subcarrier n ∈ Nw ,H is allo-

cated transmission power pw ,H
m,n = Pmax

w /Nw ,H , where Pmax
w

is the maximum transmit power of SBS w and Nw ,H is the
total number of subcarriers available at SBS w on band H.

As the users served by SBS w on the lower band L experi-
ence co-tier interference from the neighbouring mmWave SBS,
there is a need for efficient power control. Similarly to the
mechanism described in Section III, the transmission power of
SBS w operating on band L to user m on subcarrier n ∈ Nw ,L
can be computed as

pw ,L
m,n =

⎡
⎣
(

φ
Rnorm

+ ϕm

)
Θw ,LBw ,L(

μw + 1−φ
Pnorm

)
(ln2)

− 1

γ
(w)
m,n

⎤
⎦

+

.

Subcarrier pairing in the small cells operating on band H
(noise limited regime) in TDMA is performed so as to allocate
T combinations of subcarriers to each user which maximize
their average achieved rate across T time slots. On the other
hand, the small cells operating on band L (interference limited
regime) allocate T combinations of subcarriers to each user to
maximize their average achieved EE across T time slots.

Algorithm 3 outlines a step-wise procedure for user asso-
ciation to a particular band on the mmWave SBS as well as
subcarrier allocation. Here, Sz

H and Sz
L represent the vectors

holding the subcarriers assigned to SBS user z across T time
slots, while Υ is the association matrix used to determine
whether a user uses the higher frequency band or the lower
one in the SBS, Rz

t ,H and Rz
t ,L the matrices representing the

rates of the users associated with the two bands in each time
slot, and Ratezmax,H and Ratezmax,L are the maximum rates
available to user z at any subcarrier n, for the two bands.

VI. COMPLEXITY AND IMPLEMENTATION ASPECTS

The power and subcarrier allocation optimization techniques
described heretofore are of relatively low complexity and uti-
lize parameters and data readily available at a base station.
Moreover, they are designed to operate in a decentralized
fashion at every base station, as described earlier, thereby
minimizing the overall system complexity. The optimization
techniques formulated in Section III leverage the Lagrange
multiplier method, the sub-gradient method, and the Hungarian
algorithm, all of which are known to be computationally effi-
cient and converging rapidly to the optimal solution [23], [24].
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Algorithm 2 : Subcarrier Allocation and Association for Users
Associated With mmWave BS, Using TDMA

1: Initialize sets, w = {1, . . . ,W }, n = {1, . . . ,N }, t =
{1, . . . ,T}

2: Initialize z to 1
3: Initialize Sz

H and Sz
L, Υ, Rz

t ,H , Rz
t ,L, Ratezmax,H and

Ratezmax,L to 0
4: for w = 1 to W do
5: Determine Mw , the set of users associated with SBS w
6: for z = 1 to Mw do
7: for t = 1 to T do
8: for n = 1 to N do
9: Compute Rz

n,j ,HI and Rz
n,j ,LO using (4)

10: if n = N then
11: Determine Ratezmax,j ,HI and Ratezmax,j ,LO
12: end if
13: end for
14: end for
15: Determine a and b, the summation of Ratezmax,j ,HI

and Ratezmax,j ,LO, across all J time slots,
respectively

16: if a > b then
17: Υ(w , z ) = 1
18: Populate Sz

HI with the subcarriers yielding the
highest user rates in each slot

19: else
20: Υ(w , z ) = 2
21: Populate Sz

LO with the subcarriers yielding the
highest user rates in each slot

22: end if
23: end for
24: end for

Finally, with the advances in embedded devices and wireless
technology, it is feasible to deploy a small access point or base
station on a medium size UAV to extend and enhance network
service, as demonstrated by earlier studies [16]. We note that
the paper represents a preliminary promising study of a novel
and prospectively very important network setting going into
the future. Investigating large scale instances of this scenario
and other more distantly related aspects, e.g., the economics
of extending 5G network coverage to rural settings via UAVs,
lies firmly beyond the scope of the present study.

VII. PERFORMANCE EVALUATION

In our experiments, we consider a hybrid cellular network
comprising one μW BS coexisting with three dual mode
mmWave SBS and two UAV BS. We consider 50 users uni-
formly distributed in a square geographical area 1 km × 1 km.
The mmWave SBS are randomly deployed on the macro cell
edge to cater to cell edge users. We consider a 2 GHz car-
rier frequency for both the μW and UAV BS. The carrier
frequencies for the SBS are 28 GHz (L band) and 73 GHz
(H band). The bandwidth of both μW and UAV BS is 20
MHz. The SBS bandwidth is 1 GHz (L band) and 2 GHz
(H band).

Fig. 2. User association for the UAV tier versus βUAV based on biased
received power and SINR.

The maximum transmission power of μW BS, UAVs, and
SBS are 46 dBm, 30 dBm, and 30 dBm. The total num-
ber of subcarriers available to each tier k is 128. The path
loss exponent for the ground user-UAV link is 2 while that
for μW BSs is 3. The LoS and NLoS pathloss exponents
for mmWave small cells are 2 and 3.3 [14]. The minimum
rate requirement is set to 3 b/s/Hz unless otherwise stated.
The thermal noise is assumed to be −174 dBm/Hz. The half
power beamwidth angle for mmWave small cell is 10◦ [14]
and the shadowing in μW BS or UAVs are considered to
be 4 dB whereas the shadowing in mmWave small cells
are 5.2 dB and 7.2 dB for LoS and NLoS links [25]. All
statistical results are calculated over various channel con-
ditions and user locations averaged over 103 Monte Carlo
iterations.

To examine the association of users to the UAV tier over
a larger number of users, only in the first two experiments,
we set the number of users M to 100. In particular, Figure 2
depicts the number of users associated with the UAV tier
for increasing βUAV (biasing factor), on the basis of biased
received power using Γk

m and biased SINR. The six graphs in
the figure represent various biasing scenarios for the SBS and
the μW BS. When the biasing factors for both the mmWave
SBS and the μW BS are 0 dB, it yields the greatest number
of users associated with the UAV tier, irrespective of whether
the association is done on the basis of biased received power
or biased SINR. In fact, for the case when biasing is per-
formed based on the received power, increasing βUAV from
10 dB to 15 dB causes an increase by approximately 67%
in the number of users associated with the UAV tier. The
graphs representing the cases when both the SBS and the
UAV have non-zero biasing factors show a similar increasing
trend. However, the cumulative number of users associated
with the UAV tier remains lower than that for the previous
case, as a greater number of users are now associated with
the mmWave tier. As the maximum transmission power of the
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Fig. 3. User association for the UAV tier versus the half power beamwidth
angle of the UAV.

μW BS is the highest among all the tiers, therefore, introduc-
ing a non-zero biasing factor βmacro causes a sharp decline
in the number of users associated with the UAV tier irrespec-
tive of the type of user association. The figure shows that at
βUAV = 25 dB, there is a nearly 84% decrease in the num-
ber of users utilizing the UAV tier when βUAV = 10 dB,
relative to when only the SBS biasing factor is taken to be
non-zero.

The impact of the half power beam-width angle of the
UAV, ϑ, on the number of users associated with the UAV tier
is shown in Figure 3. User association is done on the basis
of biased received power. All three curves demonstrate a gen-
eral decrease with an increase in ϑ. This is due to the fact
that an increase in ϑ causes a decrease in the elevation angle,
θe , resulting in a small coverage radius se . Consequently,
PLoS decreases, which in turn causes an increased path loss
PLe

m . This increased path loss experienced by transmissions
reduces association with the UAV tier. Additionally, of the
three graphs in Figure 3, the one representing the scenario
with the highest βUAV and lowest βmacro clearly outperforms
the other two. For instance, the number of users associated
with the UAV tier in the case involving a βmacro of 0 dB at
ϑUAV = 89◦ is nearly three times that of the scenario with
βUAV = βmacro = 18 dB.

Figure 4 describes the system sum rate and system EE ver-
sus UAV altitude ze , for all power allocation mechanisms. The
graphs for system EE demonstrate that our EE maximization
approach outperforms the power minimization and rate maxi-
mization power allocation mechanisms. It is also obvious that
the system EE reaches a maximum point at ze = 140 m,
which corresponds to PLmax = 68.8 dB. Beyond this alti-
tude, the system EE begins to decrease. In fact, the system
EE at ze = 140 m, using the EE maximization approach is
35% greater in comparison to ze = 10 m. Meanwhile, the
system sum rate for the EE maximization approach reaches a
maximum point when ze = 50 m. It is shown that at higher

Fig. 4. System sum rate and system EE versus UAV altitude ze .

Fig. 5. System EE versus target SINR τ , both with and without the UAV
tier.

UAV altitudes, while PLoS increases, PLe
m also increases due

to an increased UAV-user distance. As a result of this all other
simulations results are performed at ze = 140 m.

Figure 5 describes the system EE with or without the UAV
tier, versus τ = 2Rmin − 1. It is evident for the EE maxi-
mization approach that at τ = 0 dB, the system EE with a
UAV tier is almost two times greater. Similarly, for the other
two considered power allocation approaches, the advantages
of including the UAV tier are quite evident from Figure 5.

Figure 6 depicts the system sum rate versus τ with and with-
out the UAV tier. The maximum achievable sum rate using
the rate maximization approach with UAV tier is approxi-
mately 13% greater. The results for the other power allocation
approaches are also higher when the system includes the UAV
tier. For instance, at τ = 20 dB, the achievable sum rate for the
power minimization approach is approximately 10% greater.

The variations in system EE and system sum rate versus τ
for all power allocation approaches is examined in Figure 7.
The EE maximization approach outperforms the power mini-
mization and rate maximization approaches in terms of system
EE, expectedly. At τ = −20 dB, the system EE for the power
minimization approach is approximately 88% lower. However,
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Fig. 6. System sum rate versus target SINR τ , with and without UAVs.

Fig. 7. System sum rate and system EE versus target SINR, τ .

an increase in τ subsequently results in an increase in the
system EE for this approach and reaches a maximum point
at τ = 0 dB. The achievable system EE for the rate maxi-
mization approach remains constant irrespective of the values
of τ . Additionally, as τ takes higher values, greater transmis-
sion power is required to achieve the minimum required QoS
level, which causes a decrease in the system EE shown by the
EE maximization and power minimization approaches. The
rate maximization approach achieves the highest sum rate for
the considered values of τ being investigated, as expected. At
τ = 30 dB, the achievable system sum rate for the EE maxi-
mization and power minimization approaches is approximately
equal to the achieved sum rate for the rate maximization
approach.

VIII. CONCLUSION

We designed an efficient radio resource management opti-
mization framework for a multi-tier multi-band mmWave
cellular network integrating UAV-based aerial small cells for
enhanced coverage/throughput. We analyzed the system EE
and system sum rate, along with other metrics, of this setting,
where a varying number of users could be associated with the

UAV tier depending on the biasing factors of all three net-
work tiers. Our results demonstrate that including a UAV tier
in the network can nearly double the system EE at certain
target SINR values. Furthermore, we showed that the system
EE increases with an increase in UAV altitude and after an
optimal UAV altitude, it starts decreasing. Our results show
that our proposed approach outperforms traditional schemes
aimed at maximizing the system sum rate or minimizing the
system power consumption.

We note that as this is a first study to consider this sce-
nario, it is challenging to compare to existing methods that
considered related but somewhat different network settings.
Our analytical framework as border cases, rate maximization
and power minimization, traditional approaches to network
management that have been considered earlier. As such, we
compare to them in the experimental analysis and evalua-
tion. We also note that the formulated optimization techniques
can be applied over time to adapt to prospective environmen-
tal changes. Similarly, another prospective direction of future
research can be to explore spatially moveable UAV base sta-
tions in the analysis and system design, and carry out related
optimization techniques over respective time horizons.

IX. FUTURE WORK

The paper represents a motivating starting point for rich
follow-up work that falls outside the scope of the paper. This
includes complexity analysis and design of sub-optimal lower
complexity methods, investigation of practical implementation
aspects, joint solution of power allocation and user association,
and investigation of horizon-based dynamic UAV placement,
and economics of UAV-enabled 5G network coverage.
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